Note
Click here to download the full example code
Tuning the hyperparameters of a random forest model with hyperbandΒΆ
from hyperband import HyperbandSearchCV
from scipy.stats import randint as sp_randint
from sklearn.datasets import load_digits
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelBinarizer
if __name__ == '__main__':
model = RandomForestClassifier()
param_dist = {
'max_depth': [3, None],
'max_features': sp_randint(1, 11),
'min_samples_split': sp_randint(2, 11),
'min_samples_leaf': sp_randint(1, 11),
'bootstrap': [True, False],
'criterion': ['gini', 'entropy']
}
digits = load_digits()
X, y = digits.data, digits.target
y = LabelBinarizer().fit_transform(y)
search = HyperbandSearchCV(model, param_dist,
resource_param='n_estimators',
scoring='roc_auc',
n_jobs=1,
verbose=1)
search.fit(X, y)
print(search.best_params_)
print(search.best_score_)
Total running time of the script: ( 0 minutes 0.000 seconds)