.. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_random_forest_example.py: ================================================================== Tuning the hyperparameters of a random forest model with hyperband ================================================================== .. code-block:: default from hyperband import HyperbandSearchCV from scipy.stats import randint as sp_randint from sklearn.datasets import load_digits from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import LabelBinarizer if __name__ == '__main__': model = RandomForestClassifier() param_dist = { 'max_depth': [3, None], 'max_features': sp_randint(1, 11), 'min_samples_split': sp_randint(2, 11), 'min_samples_leaf': sp_randint(1, 11), 'bootstrap': [True, False], 'criterion': ['gini', 'entropy'] } digits = load_digits() X, y = digits.data, digits.target y = LabelBinarizer().fit_transform(y) search = HyperbandSearchCV(model, param_dist, resource_param='n_estimators', scoring='roc_auc', n_jobs=1, verbose=1) search.fit(X, y) print(search.best_params_) print(search.best_score_) .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.000 seconds) .. _sphx_glr_download_auto_examples_random_forest_example.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download :download:`Download Python source code: random_forest_example.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: random_forest_example.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_